

ShapePopulationViewer

User Tutorial V1.3.2

Alexis Girault, Francois Budin, Beatriz Paniagua, Martin Styner Neuro Image Research and Analysis Laboratories University of North Carolina at Chapel Hill

ShapePopulationViewer

Installation

Installation

You can either:

- Install it within Slicer v4.3.1 or Nightly, with the Extension Manager
- Download the latest binary package on NITRC :

https://www.nitrc.org/projects/shapepopviewer

Download the source code on GitHub :

https://github.com/NIRALUser/ShapePopulationViewer

To get the source from a Linux Shell:

```
$ git clone https://github.com/NIRALUser/ShapePopulationViewer
```

\$ git checkout v1.3.2

Via 3DSlicer

To install the ShapePopulationViewer as a Slicer Extension (v4.3.1 or Nightly), you can follow this documentation:

www.slicer.org/slicerWiki/index.php/Documentation/Nightly/SlicerApplication/ExtensionsManager

 To launch ShapePopulationViewer from 3DSlicer, you can refer to this documentation :

http://wiki.slicer.org/slicerWiki/index.php/Documentation/Nightly/Extensions/ShapePopulationViewer

Via GitHub

If you downloaded the sources on Github, you will have to build the project using **Cmake v2.8.3** or higher.

You can then specify which kind of build you want to make using the boolean variable ShapePopulationViewer_SUPERBUILD.

- Qt 4 is required (tested with Qt4.7.4.)
- If you don't want to use the superbuild option, you will need:
 - VTK 5 built with QT 4 (tested with VTK5.10.1.)
 - SlicerExecutionModel built with ITK 4 (tested with ITK4.1.)

ShapePopulationViewer

GUI: Basic Usage

GUI

Loading mesh(es)

There are multiple ways to load surfaces using the *File* menu:

- Loading vtk file(s) with "Open Files"
 - > select the files you want to load
- Loading an entire directory with "Open Directory"
 - > all the vtk files in the selected directory will be loaded
- Loading files from a Comma Separated Value file with "Load CSV"
 - > your file will be open in a spreadsheet to allow you to select the files you want to load

Add and delete meshes

ADDING

Once meshes are displayed in the Display Area, "Open" become "Add": loading new files will add the meshes to the current display window.

DELETING

You can delete the selected items or all the items using the options in the *File* menu : "Delete Selection" and "Delete All".

Drag & Drop meshes

You can also load/add files (vtk files, directories or CSV files) by dropping them over the Display Area.

Interacting with surfaces

In the Display Area, you can interact with multiple surfaces at the same time by selecting their respective windows and then interacting (click & drag, roll...) with only one of them:

- CTRL + Left Mouse : Select or Unselect the window on which you clicked
- CTRL + A : Select All
- ESC: Unselect All

Interacting with surfaces

If you **select multiple meshes**, the display properties of the first selected mesh will be used for all the other selected meshes :

- camera position,
- displayed attribute.

You only control one attribute and one camera at a time!

Interacting with surfaces

You can also **only display the meshes in full screen** using the button between the Display Area and the tools below.

ShapePopulationViewer

GUI: Information Box

File Information

The first tab of the Information Box displays information about the file such as its **name and directory**, but also information about the loaded surface: **number of points and cells.**

If you select more than one surface at a time, you will not be able to get any information about them. You will have to select only one mesh to get its information.

File information Attributes/Ranges		
Filename: 1.vtk		
Directory: [/ShapePopulationViewer/Data/DataTest]		
Number of Points:	4002	
Number of Cells:	8000	

File information	Attributes/Ranges	
Filename 2 surfaces selected, select only one		
Directory:		
Number of Points:		
Number of Cells	:	

Attributes/Ranges

The second tab of the Information Box displays the attributes names, dimension and ranges (magnitude if the Attribute is a vector field)

- If different surfaces are loaded, only the common attributes will be displayed.
- When you select multiple meshes, the ranges displayed will be computed between the minimum and the maximum among all the selected surfaces

ShapePopulationViewer

GUI: Tool Box

Tools Box

- Colormap: Modify the attribute displayed on the meshes
 - Colorbar: customize gradient colors and range displayed on the meshes
 - Vectors : options for vector visualization
- **View Options**: Basic interactions with the camera
- Synchronization : Define your interactions with the surfaces
- **Display Options**: Define what to display in the windows and how to display them

Colormap and Attribute

A colormap is relative to an attribute.

- Changing the colormap options will result in updating the lookup table on all the meshes with the same attribute, not only the selected ones.
- Those modifications are saved per attribute: you can change an other attribute colormap and come back to the first attribute without losing your customization.

Attribute where are you?

- By default ShapePopulationViewer **creates the "Normals" Attribute** which can display the normals as a vector field, and their magnitude as a scalar field: (same value: 1.0 solid color)
- You can use MeshMath in the SPHARM-PDM distribution to incorporate scalars and vectors into a VTK file: www.nitrc.org/projects/spharm-pdm
- MeshMath <inputVTK> <outputVTK> -KWMtoPolyData <attributeTXT> <attributeName>
 - InputVTK: path to the vtk file with the points
 - OutputVTK: name of the vtk file which will be created with the new attribute
 - AttributeTXT: path to the TXT file with the scalars or vectors
 - AttributeName: name of the attribute field

Colorbar (1/2)

- Attribute ComboBox: you can define which pointdata values you want to display: either scalar or vector fields.
- ColorBar: displays the gradient computed between the chosen range. Grab and move an arrow to modify its scalar value associated, double-click to modify its color.
- Arrow options: delete the selected arrow or modify its position using the comboBox. Add new points or reset them.
- Range values: range to display the colormap between, or reset to the common ranges of the meshes.

Colorbar (2/2)

- To modify a color associated with an arrow, simply double-click on it.
- A **colorPicker** window will appear, allowing you to select the desired color.

Vectors (1/2)

- Attribute ComboBox: The Vector tab is enabled if the attribute is a vector field.
- Display vectors: hide or show vector glyphs on the surfaces.
- Mesh Opacity: modifies the mesh opacity, to emphasize the vector glyphs.
- Vectors Scale : modifies the glyphs size.
- Vectors Density: masks some points to display less glyphs.

Vectors (2/2)

View Options (1/4)

- Axis Buttons: these 6 buttons allow the user to position the camera along the respective axis
- **Reset**: reset the focal point position and distance to the camera
- Aligned: define the alignment of the surfaces

View Options (2/4)

Axis buttons: Example of the 6 camera positions:

Superior Inferior

Sagittal Right Sagittal Left

Posterior Anterior 26

View Options (3/4)

(1)

75.0

Reset Button:

- Reset the camera distance (1)
- Reset the focal point position (2)

View Options (4/4)

Alignment:

By default, surfaces are displayed with the position values associated to every vertex stored in the vtk file: they are not aligned.

When aligning the surfaces using this tool, their center of gravity is translated to the origin, allowing the user to properly visualize and compare different surfaces.

Synchronization

Real-Time/Delayed :

- Real-Time : all the selected meshes are rendered at the same time as the one being interacted with.
- *Delayed* : all the selected meshes are rendered once the interaction with one of them is finished.

This option is useful when processing a large number of meshes/points.

- ALL/NONE : select all/unselect all windows
- Indications to interact with the surfaces

Display Options (1/2)

- Annotations display: hide/show the colorbar, mesh name or attribute name by clicking on the eyes.
- All Surfaces / Square Windows :
 - *All Surfaces*: all the meshes will be displayed to **fit in the display Area,** modifying their render-window size.
 - *Square Windows*: the meshes renderwindows will be square. You will be able to scroll in the Display Area to visualize all the meshes.
- **Columns**: Organizes the windows in the indicated number of columns.

Display Options (2/2)

ShapePopulationViewer

GUI: Advanced Options

Export render-windows

New feature in v1.3.2 : you can **export the render-windows into vector images** in PDF, PS, EPS, TEX or SVG.

No limitation in resolution: perfect to print for a scientific poster.

- 1. Select the windows you wish to export,
- 2. Go to menu File/Export Selection/choose which format,
- 3. Select in which directory you want so save the files,
- 4. They will be saved under this template : vtkfilename_attributeDisplayed.formatChosen

Option Menu

The menu bar contains an "Option" Menu which includes three suboptions :

- Camera configuration: modify the camera configuration values, load and save them into a .pvcc file.
- Load & Save Colorbar: load & save the arrows colors and positions into a .spvcm file.
- Window colors: customize the background and text colors used in the render windows.

Camera Configuration

The camera Configuration tab launches a dialog window to configure your camera.

You can:

- directly modify the Position, Focal Point, View Up vectors and the Scale scalar of the camera.
- Load or Save a .pvcc file (ParaView camera configuration)

Be careful about the mesh alignment (VIEW)

This will influence the camera configuration values.

Load & Save Colorbars

```
<?xml version="1.0" encoding="UTF-8"?>
<SPVColorMap description="ShapePopulationViewer ColorMap" version="1.0">
    <colormap name="reset" points="3">
        <colorpoint index="0">
            <position>0</position>
            <R>0</R>
            <G>1</G>
            <B>0</B>
        </colorpoint>
        <colorpoint index="1">
            <position>0.5</position>
            <R>1</R>
            <G>1</G>
            <B>0</B>
        </colorpoint>
        <colorpoint index="2">
            <position>1</position>
            <R>1</R>
            <G>0</G>
            <B>0</B>
        </colorpoint>
    </colormap>
</SPVColorMap>
```

You can save and load colorpoints to use custom colorbars quickly.

The file format spvcm stands for "ShapePopulationViewer ColorMap".

It is a very basic xml file which stores the points, their relative position between 0 and 1, and their color components, RGB, between 0 and 1.

Drag & Drop

Drag & Drop also works with the camera and colormap configurations files.

You can drop .pvcc files and .spvcm files in the MainWindow to load the camera configurations and the colorpoints easily.

Window Colors

The Window colors tab launches a dialog window to customize the background and text colors.

It is useful for example if you want to display white backgrounds, to present results in a publication:

ShapePopulationViewer

Command Line Interface

Command Line Interface

ShapePopulationViewer can be launched from the command line to directly load **vtk files/directory**, and **configuration files** (colormap and/or camera).

You can visualize all the options by running:

\$./ShapePopulationViewer --help

Command Line Interface

```
-v <std::vector<std::string>>, --vtkfiles <std::vector<std::string>>
  .vtk Input files (accepted multiple times)
-d <std::string>, --directory <std::string>
 Input directory
--csv <std::string>
  .csv Input file
-c <std::string>, --camera <std::string>
  .pvcc Camera Configuration File
-q <std::string>, --gradient <std::string>
  .spvcm Colormap Configuration File
```


ShapePopulationViewer

Help & Contact

Help

Wiki

www.nitrc.org/plugins/mwiki/index.php/shapepopviewer:MainPage

Forums

www.nitrc.org/forum/?group_id=759

Bug & Features Tracker

www.nitrc.org/tracker/?group_id=759

Contact

For additional remarks or questions, please email:

girault@email.unc.edu